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Synthesis and structural characterization of [TpBut
2]GaS: a terminal

gallium sulfido complex in a system for which the indium counterpart
is a tetrasulfido derivative, [TpBut

2]In(ç2-S4)

Matthew C. Kuchta and Gerard Parkin*

Department of Chemistry, Columbia University, New York, NY 10027, USA

The synthesis of the terminal gallium sulfido complex
[TpBut

2]GaS via the reaction of monovalent [TpBut
2]Ga with

elemental sulfur provides a striking contrast with the formation
of the tetrasulfido derivative [TpBut

2]In(η2-S4) in the indium
system; such an observation provides a strong indication that
gallium exhibits a greater tendency to partake in multiple
bonding than does indium.

Complexes which exhibit multiple bonding to the heavier p
block elements continue to attract considerable attention and
provide challenges for the synthetic chemist. We are currently
interested in terminal chalcogenido complexes of these elem-
ents 1 and have recently employed the sterically demanding
tris(3,5-di-tert-butyl)pyrazolylhydroborato ligand to isolate the
gallium and indium derivatives [TpBut

2]GaE (E = Se or Te) 2 and
[TpBut

2]InSe.3 In this paper, we describe a difference in the chem-
istry of gallium and indium which clearly indicates that gallium
shows a greater tendency to form multiple bonds.

We have previously reported that the terminal indium sele-
nido complex [TpBut

2]InSe is obtained upon reaction of [TpBut
2]-

In with elemental selenium;3 in contrast, the corresponding
reaction with elemental sulfur yields the tetrasulfido derivative,
[TpBut

2]In(η2-S4).
4 This difference is quite unexpected in the

sense that terminal selenido complexes are generally much less
common than their terminal sulfido counterparts.5 Since gal-
lium and indium frequently show a close correspondence in
their chemistry,6 it was of interest to compare the behavior of
the gallium chalcogenido system with that of indium. Signifi-
cantly, we have discovered that there is a notable difference in
their sulfido derivatives. Thus, [TpBut

2]Ga 7 reacts with elemental
sulfur at room temperature over a period of 1 d to yield the
terminal sulfido complex [TpBut

2]GaS [equation (1)],8 rather
than the tetrasulfido complex [TpBut

2]Ga(η2-S4).
9

The structure of [TpBut
2]GaS has been determined by X-ray

diffraction, as illustrated in Fig. 1.10 Notably the Ga≈S bond
length of 2.093(2) Å is considerably shorter than other Ga]S
bond lengths that have been reported, and therefore attests
to the multiply bonded character of the interaction.11 For
example, the mean Ga]S bond length for complexes listed in
the Cambridge Structural Database is 2.33 Å,12 with some
representative examples listed in Table 1.13,14

The terminal sulfido complex [TpBut
2]GaS may also be

obtained by reaction of the monovalent gallium complex
[TpBut

2]Ga with [TpBut
2]In(η2-S4) at room temperature [equation

(2)]. Notably, 1H NMR spectroscopy provides no evidence for

4[TpBut
2]Ga 1 [TpBut

2]In(η2-S4) →
4[TpBut

2]GaS 1 [TpBut
2]In (2)

the existence of significant concentrations of possible inter-
mediate species such as [TpBut

2]InS or [TpBut
2]Ga(Sx) (x = 2–4)

in the above transformation. A further distinction between the
gallium and indium systems is that the sulfido ligand of [TpBut

2]-
GaS is not abstracted by PR3 (R = Me or Et),15 whereas
[TpBut

2]In(η2-S4) reacts readily with excess PR3 at room tem-
perature to give the monovalent indium complex [TpBut

2]In.4,16

The isolation of [TpBut
2]GaS in preference to [TpBut

2]Ga-
(η2-S4), the counterpart in the indium system, provides con-
vincing evidence that gallium partakes in multiple bonding
more readily than does indium. Further support for this
notion includes the observations that (i) the selenido ligand
of [TpBut

2]InSe is readily transferred to [TpBut
2]Ga giving

[TpBut
2]GaSe,2 and (ii) the gallium tellurido complex [TpBut

2]-
GaTe has been isolated, whereas the indium analog has
not.2

Of the Group 13 chalcogenido complexes, [TpBut
2]GaE

(E = S, Se or Te), [TpBut
2]InSe and [TpBut

2]In(η2-S4), it is evident
that the indium sulfido complex is an anomaly.17 Such an obser-
vation indicates the fine balance that exists in the formation of
M≈E multiple versus single bonds in these systems. A further
illustration of the subtle interplay between M≈E multiple and
single bonds is provided by the fact that two closely
related germanium sulfido complexes, Tbt(Tip)GeS and
[Tbt(Mes)Ge(µ-S)]2, exist as terminal and bridging sulfido
complexes, respectively.18–20

Fig. 1 Molecular structure of [TpBut
2]GaS. Selected bond lengths (Å)

and angles (8): Ga]S 2.093(2), Ga]N12 2.056(5), Ga]N22 2.041(4),
Ga]N32 2.049(4); S]Ga]N12 131.0(1), S]Ga]N22 119.1(1),
S]Ga]N32 123.4(1), N12]Ga]N22 88.2(2), N12]Ga]N32 88.1(1),
N22]Ga]N32 97.3(2)
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In summary, the terminal gallium sulfido complex [TpBut
2]-

GaS has been synthesized via the reaction of [TpBut
2]Ga with

elemental sulfur. Under comparable conditions, the corre-
sponding indium system yields the tetrasulfido complex
[TpBut

2]In(η2-S4), thereby providing convincing evidence that
gallium exhibits a greater tendency to partake in multiple
bonding than does indium.
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Table 1 Representative Ga]S bond lengths less than 2.4 Å

Complex

[TpBut
2]GaS

M6Ga2S6 (M = Na or K)
Sr2[Ga2S5]
[CsGaS2]∞

K8Ga4S10?16H2O
Ga4I4(µ2-SMe)4S2

[pyGa(µ-S)Cl]3

[Et4N]3[Ga3S3Cl6]?THF
[ButGa(µ2-S)py]3

[(Me3Si)2CHGa]2S
Ga[S(2,4,6-But

3C6H2)]3

BunGa[S(2,4,6-But
3C6H2)]2

(2,4,6-But
3C6H2)2Ga(SCH3)

(Et4N)[Ga(SPh)4]
(Pr4N)[Ga(SEt)4]
[Cp(CO)2FeGa(µ3-S)]4

[(Me4C5H6N)Ga(µ3-S)]4

[(Me2EtC)Ga(µ3-S)]4

[ButGa(µ3-S)]4

[ButGa(µ3-S)]6

[ButGa(µ3-S)]7

[Me2Ga{µ-S(2,6-Me2C6H3)}]4

d(Ga]S)ave/Å

2.093(2)
2.24[1]term, 2.34[1]bridge

2.24[2]term, 2.31[3]bridge

2.28[1]
2.25[1]term, 2.290[9]bridge

2.204(8), 2.336(7)
[Ga]S(C)]

2.215[7]
2.227[9]
2.24[1]
2.2197(7)
2.205[8]
2.21[1]
2.271(2)
2.26[2]
2.264[1]
2.38[2]
2.36[2]
2.356[6]
2.359(3), 2.365(5)
2.34[4]
2.33[4]
2.40[1]
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